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We describe the design and implementation of KSSOLV, a MATLAB toolbox for solving a class
of nonlinear eigenvalue problems known as the Kohn-Sham equations. This type of problem
arises from electronic structure calculation which is nowadays an essential tool for studying the
microscopic quantum mechanical properties of molecules, solids and other nanoscale materials.
KSSOLV is designed to enable researchers in applied mathematics and scientific computing to

investigate the convergence properties of the existing algorithms in a user friendly environment.
It is also well suited for developing new algorithms for solving the Kohn-Sham equations. The
toolbox makes use of the object-oriented programming features available in MATLAB so that the
process of setting up a physical system is straightforward and the amount of coding effort required
to prototype, test and compare new algorithms is significantly reduced.

Categories and Subject Descriptors: G.1.10 [Numerical Analysis]: Applications – Electronic
Structure Calculation; G.1.3 [Numerical Analysis]: Numerical Linear Algebra; G.1.6 [Numer-

ical Analysis]: Optimization; G. 4. [Mathematics of Computing]: Mathematical Software-
Algorithm Design and Analysis

General Terms: nonlinear eigenvalue problem, density functional theory (DFT), Kohn-Sham equa-
tions, self-consistent field iteration (SCF), direct constrained minimization (DCM)
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1. INTRODUCTION

KSSOLV is a MATLAB toolbox for solving a class of nonlinear eigenvalue problems
known as the Kohn-Sham equations. This type of problem arises from electronic
structure calculation which is nowadays an essential tool for studying the micro-
scopic quantum mechanical properties of molecules, solids and other nanoscale ma-
terials. Through the density functional theory (DFT) formalism, one can reduce
the many-body Schrödinger equation used to describe the electron-electron and
electron-nuclei interactions to a set of single-electron equations that have far fewer
degrees of freedom. These equations, which we will describe in more detail in
the next section, were first developed by W. Kohn and L. J. Sham [Kohn and
Sham 1965]. Once these equations are discretized, they become a set of nonlinear
equations that resemble algebraic eigenvalue problems presented in standard linear
algebra textbooks. The main feature that distinguishes the Kohn-Sham equations
from the standard linear eigenvalue problem is that the matrix operator in these
equations is a function of the eigenvectors to be computed. For this reason, the
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2 · KSSOLV

problem defined by the Kohn-Sham equations is regarded as a nonlinear eigenvalue
problem.

Due to the nonlinear coupling between the matrix operator and its eigenvectors,
the Kohn-Sham equations are much more difficult to solve than a standard linear
eigenvalue problem. Currently, the most widely used numerical method for solving
this type of problem is the Self Consistent Field (SCF) iteration, which we will
examine in detail in Section 3. The SCF iteration has been implemented in almost
all quantum chemistry and physics software packages. However, the convergence
properties of SCF are not yet fully understood from a numerical analysis point of
view. It is well known that the simplest form of SCF iteration often fails to converge
to the correct solution. A number of techniques have been developed by chemists
and physicists to improve the convergence of SCF. However, these methods are not
well understood either, and they can fail in practice as well.

Clearly, more work is needed to investigate the mathematical properties of the
Kohn-Sham equations, to analyze the convergence behavior of the SCF iteration,
and to develop new numerical methods that are more reliable and efficient. Some
progress has recently been made in that direction [Le Bris 2005; Cancès and Le Bris
2000; Cancés 2001]. However, such type of effort is being hampered, in the larger
applied mathematics community, by the lack of mathematical software tools that
one can use to quickly grasp the numerical properties of the Kohn-Sham equations
and perform simple computational experiments on realistic systems without getting
bogged down by physics or chemistry nomenclatures.

The lack of such tools also makes it difficult to introduce basic concepts and
algorithms related to DFT and Kohn-Sham equations, which are relatively well
developed in computational chemistry and physics curriculum, into undergraduate
and graduate level numerical analysis courses. Although a number of well designed
software packages are available for performing DFT calculations on large molecules
and bulk systems, it is often a daunting task for students and researchers with
minimal physics and chemistry background to delve into the these codes to extract
mathematical relations among various pieces of the software. Furthermore, because
these codes are usually designed to handle large systems efficiently on parallel com-
puters, the data structure employed to encode basic mathematical objects such as
vectors and matrices is often sophisticated. Consequently, standard numerical op-
erations such as the fast Fourier transform, numerical quadrature calculations, and
matrix vector multiplications become non-transparent, thereby making it difficult
for a numerical analyst to develop and test new ideas in such an environment.

The KSSOLV toolbox we developed provides a much needed tool that will en-
able numerical analysts as well as computational scientists to study properties of
Kohn-Sham equations by performing various computational experiments. It will
also allow them to develop and compare new numerical methods for solving this
type of problem in a user friendly environment. One of the main features of KS-
SOLV is its objected oriented design that allows users with a minimal physics or
chemistry background to assemble a realistic atomistic system quickly. It also al-
lows developers to easily manipulate wavefunctions and Hamiltonians as if they
were vectors and matrices.

We will present the main features and capabilities of KSSOLV in this paper.
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Since KSSOLV is targeted mainly towards users who are interested in the numer-
ical analysis aspect of electronic structure calculation, more emphasis is placed on
numerical algorithms and how they can be easily prototyped within KSSOLV. We
will provide some background information on the Kohn-Sham equations and their
properties in section 2. Numerical methods for solving this type of problem are
discussed in section 3 along with some of the difficulties one may encounter. We
will describe the design features and the implementation details of KSSOLV in sec-
tion 4. In section 5, we will illustrate how an algorithm for solving the Kohn-Sham
equations can be easily turned into a piece of MATLAB code in KSSOLV. A couple
of examples are provided in section 6 to demonstrate how KSSOLV can be used to
study the convergence behavior of different algorithms and visualize the computed
results.

2. THE PROBLEM

The electron density of a many-atom system can be estimated by solving the well
known many-body Shrödinger equation

HΨ(r1, r2, ..., rne
) = λΨ(r1, r2, ..., rne

), (1)

where Ψ(r1, r2, ..., rne
) (ri ∈ R3) is a many-body wavefunction whose magnitude

square characterizes an electronic configuration in a probabilistic sense, the differen-
tial operator H is a many-body Hamiltonian that relates electronic configuration to
the energy of the system which is quantized and given by λ ∈ R. The wavefunction
Ψ(r1, r2, ..., rne

) is normalized to satisfy
∫

Ω

|Ψ(r1, r2, ..., rne
)|2dr1dr2 · · · drne

= 1, (2)

where Ω = Ω1×Ω2 · · ·Ωne
, Ωi ⊆ R

3. It must also obey the antisymmetry principle,
i.e.,

Ψ(r1, ..., ri, ..., rj , ..., rne
) = −Ψ(r1, ..., rj , ..., ri, ..., rne

). (3)

If we assume the positions of the nuclei r̂i, i = 1, 2, ..., nu, are fixed, an assumption
often known as the Born-Oppenheimer approximation, the many-electron Hamilto-
nian H can be defined (in atomic units) as

H = −
1

2

ne
∑

i=1

∆ri
−

nu
∑

i=1

ne
∑

j=1

zj

|ri − r̂j |
+

∑

1≤i,j≤nu

1

|ri − rj |
, (4)

where ∆ri
is the Laplacian operator, and zj is the charge of the j-th nucleus.

Equation (1) is clearly a linear eigenvalue problem. In many cases, we are in-
terested in the eigenfunction Ψ associated with the smallest eigenvalue λ1 which
corresponds to the minimum (ground state) of the total energy functional

Etotal(Ψ) =

∫

Ω

Ψ∗HΨdΩ (5)

subject to the normalization and antisymmetry constraints (2) and (3). For atoms
and small molecules that consist of a few electrons (less than three), we can dis-
cretize (1) and solve the eigenvalue problem directly. If ri is discretized on a

ACM Transactions on Mathematical Software, Vol. V, No. N, December 2007.



4 · KSSOLV

m × m × m grid, the dimension of H is n = m3ne . For m = 32 and ne = 5,
n is great than 3.5 × 1022. Thus, it would not be feasible to solve such an eigen-
value problem on even the most powerful computers available today.

To address the dimensionality curse, several approximation techniques have been
developed to decompose the many-body Schrödinger equation (1) into a set of
single-electron equations that are coupled through the electron density to be defined
below. The most successful among these is based on the Density Functional Theory

(DFT) [Hohenberg and Kohn 1964]. In their seminal work, Hohenberg and Kohn
showed that at the ground-state, the total energy of an electronic system depends
solely on the electron density

ρ(r) ≡ ne

∫

Ω\Ω1

|Ψ(r, r2, r3, ..., rne
)|2dr2dr3 · · · drne

.

However, the analytical expression for this density dependent total energy formal-
ism is unknown. In a subsequent paper [Kohn and Sham 1965], Kohn and Sham
proposed a practical way to approximate the total energy by making use of sin-
gle electron wavefunctions associated with a non-interacting system as a reference.
Using the Kohn-Sham model [Kohn and Sham 1965], the total energy (5) can be
defined as

EKS
total =

1

2

ne
∑

i=1

∫

Ω

|∇ψi|
2dr+

∫

Ω

ρViondr+
1

2

∫

Ω

∫

Ω

ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2 +Exc(ρ), (6)

where ψi, i = 1, 2, ..., ne are known as the single-particle wavefunctions that satisfy
the orthonormality constraint

∫

ψ∗
i ψj = δi,j , ρ(r) is the charge density defined as

ρ(r) =

ne
∑

i=1

|ψi(r)|
2, (7)

the function Vion(r) =
∑

r̂j
zj/|r− r̂j| represents the ionic potential induced by the

nuclei, and Exc(ρ) is known as the exchange-correlation energy which is a correction
term used to account for energy that the non-interacting reference fails to capture.
The analytical form of Exc(ρ) is unknown. Several approximation have been derived
semi-empirically [Perdew and Zunger 1981; Perdew and Wang 1992]. In KSSOLV,
we use the local density approximation (LDA) suggested in [Kohn and Sham 1965].
In particular, Exc is expressed as

Exc =

∫

R3

ρ(r)ǫxc[ρ(r)]dr, (8)

where ǫxc(ρ) represents the exchange-correlation energy per particle in a uniform
electron gas of density ρ. The analytical expression of ǫxc used in KSSOLV is the
widely used formula developed in [Perdew and Zunger 1981].

It is not difficult to show that the first order necessary condition (Euler-Lagrange
equation) for the constrained minimization problem

min EKS
total(ψi)

s.t ψ∗
i ψj = δi,j

(9)
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has the form

H(ρ)ψi = λiψi, i = 1, 2, ..., ne, (10)

ψ∗
i ψj = δi,j . (11)

where the single-particle Hamiltonian H(ρ) (also known as the Kohn-Sham Hamil-
tonian) is defined by

H(ρ) = −
1

2
∆ + Vion(r) + ρ ⋆

1

|r|
+ Vxc(ρ), (12)

where ⋆ denotes the convolution operator. The function Vxc(ρ) in (12) is the deriva-
tive of Exc(ρ) with respect to ρ. Because the Kohn-Sham Hamiltonian is a function
of ρ, which is in turn a function of ψ, the eigenvalue problem defined by (10), which
is often referred to as the Kohn-Sham equation, is a nonlinear eigenvalue problem.

3. NUMERICAL METHODS

In this section, we will describe the numerical methods employed in KSSOLV to
obtain an approximate solution to the Kohn-Sham equations (10)-(11). We begin
by discussing the planewave discretization scheme that turns the continuous non-
linear problem into a finite dimensional problem. The finite dimensional problem is
expressed as a matrix problem in section 3.2. We present two different approaches
to solving the matrix nonlinear eigenvalue problem in sections 3.3 and 3.4. Both of
these approaches have been implemented in KSSOLV.

3.1 Planewave Discretization

To solve the minimization problem (9) or the Kohn-Sham equation (10) numerically,
we must first discretize the continuous problem. Standard discretization schemes
such as finite difference, finite elements and other basis expansion (Ritz-Galerkin)
methods [Ritz 1908] all have been used in practice. The discretization scheme we
have implemented in the current version of KSSOLV is a Ritz type of method that
expresses a single electron wavefunction ψ(r) as a linear combination of planewaves

{e−igT
j r}, where gj ∈ R

3 (j = 1, 2, ...,K) are frequency vectors arranged in a
lexicographical order. The planewave basis is a natural choice for studying periodic
systems such as solids. It can also be applied to non-periodic structures (e.g.,
molecules) by embedding these structures in a ficticious supercell [Payne et al.
1992] that is periodically extended throughout an open domain. The use of the
planewave basis has the additional advantage of making various energy calculations
in density functional theory easy to implement. It is the most convenient choice for
developing and testing numerical algorithms for solving the Kohn-Sham equations
within the MATLAB environment, partly due to the availability of efficient fast
Fourier transform (FFT) functions.

It is natural to assume that the potential for R-periodic atomistic systems is a
periodic function with a period R ≡ (R1, R2, R3). Consequently, we can restrict
ourselves to one canonical period often referred to as the primitive cell and impose
periodic boundary condition on the restricted problem. It follows from the Bloch’s
theorem [Ashcroft and Mermin 1976; Bloch 1928] that eigenfunctions of the re-
stricted problem ψ(r) can be periodically extended to the entire domain (to form
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the eigenfunction of the original Hamiltonian) by using the following formula:

ψ(r + R) = eikT Rψ(r), (13)

where k = (k1, k2, k3) is a frequency or wave vector that belongs to a primitive cell
in the reciprocal space (e.g., the first Brillouin zone [Ashcroft and Mermin 1976]).
If the R-periodic system spans the entire infinite open domain, the set of k’s allowed
in (13) forms a continuum in the first Brillouin zone. That is, each ψ(r) generates
an infinite number of eigenfunctions for the periodic structure. It can be shown
that the corresponding eigenvalues form a continuous cluster in the spectrum of the
original Hamiltonian [Ashcroft and Mermin 1976]. Such a cluster is often referred
to as an energy band in physics. Consequently, the complete set of eigenvectors
of H can be indexed by the band number i and the Brillouin frequency vector k
(often referred to as a k-point), i.e., ψi,k. In this case, the evaluation of the charge
density must first be performed at each k-point by replacing ψi(r) in (7) with ψi,k

to yield

ρk =

ne
∑

i=1

|ψi,k|
2.

The total charge density ρ(r) can then be obtained by integrating over k, i.e.,

ρ(r) =
|Ω|

(2π)3

∫

BZ

ρk(r)dk, (14)

where |Ω| denotes the volume of the primitive cell in the first Brillouin zone. Fur-
thermore, an integration with respect to k must also be performed for the kinetic
energy term in (6).

When the primitive cell (or supercell) in real space is sufficiently large, the first
Brillouin zone becomes so small that the integration with respect to k can be
approximated by a single k-point calculation in (6) and (14).

To simplify our exposition, we will, from this point on, assume that a large
primitive cell is chosen in the real space so that no integration with respect to k
is necessary. Hence we will drop the index k in the following discussion and use
ψ(r) to represent an R-periodic single particle wavefunction. The periodic nature
of ψ(r) implies that it can be represented (under some mild assumptions) by a
Fourier series, i.e.,

ψ(r) =

∞
∑

j=−∞
cje

igT
j r, (15)

where cj is a Fourier coefficient that can be computed from

cj =

∫ R/2

−R/2

ψ(r)e−igT
j rdr.

To solve the Kohn-Sham equations numerically, the Fourier series expansion (15)
must be truncated to allow a finite number of terms only. If all electrons are
treated equally, the number of terms required in (15) will be extremely large. This
is due to the observation that the strong interaction between a nucleus and the
inner electrons of an atom, which can be attributed to the presence of singularity
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in Vion(r) at the the nuclei position r̂j , must be accounted for by high frequency
planewaves. However, because the inner electrons are held tightly to the nuclei, they
are not active in terms of chemical reactions, and they usually do not contribute
to chemical bonding or other types of interaction among different atoms. On the
other hand, the valence electrons (electrons in atomic orbits that are not completely
filled) can be represented by a relatively small number of low frequency planewaves.
These electrons are the most interesting ones to study because they are responsible
for a majority of the physical properties of the atomistic system. Hence, it is natural
to focus only on these valence electrons and treat the inner electrons as part of an
ionic core. An approximation scheme that formalizes this approach is called the
pseudo-potential approximation [Phillips 1958; Phillips and Kleinman 1958; Yin
and Cohen 1982]. The details of pseudopotential construction and their theoretical
properties are beyond the scope of this paper. For the purpose of this paper, we
shall just keep in mind that the use of pseudo-potentials allows us to

(1) remove the singularity in Vion;

(2) reduce the number of electrons ne in (6) and (7) to the number of valence
electrons;

(3) represent the wavefunction associated with a valence electron by a small number
of low frequency planewaves.

In practice, the exact number of terms used in (15) is determined by a kinetic
energy cutoff Ecut. Such a cutoff yields an approximation

ψ(r) =
K

∑

j=1

cje
igT

j r, (16)

where K is chosen such that

|gj |
2 < 2Ecut, (17)

for all j = 1, 2, ...,K.
Once Ecut is chosen, the minimal number of samples of r along each Cartesian

coordinate direction (n1, n2, n3) required to represent ψ(r) (without the aliasing
effect) can be determined from the sampling theorem [Nyquist 1928]. That is, we
must choose ni (i = 1, 2, 3) sufficiently large so that

1

2

(

2πni

Ri

)

> 2
√

2Ecut, (18)

is satisfied, i.e., ni must satisfy ni > 2Ri

√
2Ecut

π .
We will denote the uniformly sampled ψ(r) by a vector x ∈ Rn, where n = n1n2n3

and the Fourier coefficients cj in (16) by a vector c ∈ Cn with zero paddings used
to ensure the length of c matches that of x. If the elements of x and c are ordered
properly, these two vectors satisfy

c = Fx. (19)

where F ∈ Cn×n is a discrete Fourier transform matrix [Van Loan 1987].
After a sampling grid has been properly defined, the approximation to the to-

tal energy can be evaluated by replacing the integrals in (6) and (8) with simple
summations over the sampling grid.
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The use of planewave discretization makes it easy to evaluate the kinetic energy.
Since

∇re
igT

j r = igje
igT

j r,

the first term in (6) can be computed as

1

2

ne
∑

i=1

K
∑

j=1

|gjc
(i)
j |

2, (20)

where c
(i)
j is the jth Fourier coefficient of the wavefunction associated with the ith

valence electron (denoted by xi).

3.2 Finite Dimensional Kohn-Sham Problem

If we let X ≡ (x1, x2, ..., xne
) ∈ Cn×ne be a matrix that contains ne discretized

wavefunctions, the approximation to the kinetic energy (6) can also be expressed
by

Êkin =
1

2
trace(X∗LX), (21)

where L is a finite dimensional representation of the Laplacian operator in the
planewave basis. Due to the periodic boundary condition imposed in our problem,
L is a block circulant matrix that can be decomposed as

L = F ∗DgF, (22)

where F is the discrete Fourier transform matrix used in (19), and Dg is a diagonal
matrix with g2

j on the diagonal. If follows from (19) and (22) that (20) and (21)
are equivalent.

In the planewave basis, the convolution that appears in the third term of (6)
may be viewed as the L−1ρ(X), where ρ(X) = diag(XX∗). (To simplify notation,
we will drop X in ρ(X) in the following.) However, since L is singular (due to the
periodic boundary condition), its inverse does not exist. Similar singularity issues
appear in the planewave representation of the pseudopotential and the calculation
of the ion-ion interaction energy. However, it can be shown that the net effects of
these singularities cancel out for a system that is electrically neutral [Ihm et al.
1979; Pickett 1989]. Thus, one can simply remove these singularities by replacing
L−1ρ with L†ρ, where L† is the pseudo-inverse of L defined as

L† = F ∗D†
gF,

where D†
g is a diagonal matrix whose diagonal entries (di) are

di =

{

g−2
j if gi 6= 0;

0 otherwise.

Consequently, the third term in (6), which corresponds to an approximation to the
Coulomb potential, can be evaluated as

Êcoul = ρTL†ρ = [Fρ]∗D†
g[Fρ],

However, removing these singularities all together results in a constant shift of the
total energy that must be compensated. It has been shown in [Ihm et al. 1979]
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that this compensation, which contains two components denoted by EEwald + Erep,
can be computed once for all in a DFT calculation using the techniques described
in [Ihm et al. 1979]. We will not go into further details of how EEwald and Erep are
computed since they do not play any role in the algorithms we will examine in this
paper.

To summarize, the use of planewave basis allows us to define a finite dimensional
approximation to the total energy functional (6) as

Êtotal(X) = trace[X∗(
1

2
L+ V̂ion)X ] +

1

2
ρTL†ρ+ ρT ǫxc(ρ) + EEwald + Erep, (23)

where V̂ion denotes the ionic pseudopotentials sampled on the suitably chosen Carte-
sian grid of size n1 × n2 × n3.

It is easy to verify that the KKT condition associated with the constrained min-
imization problem

min
X∗X=I

Êtotal(X) (24)

is

H(X)X −XΛne
= 0, (25)

X∗X = I,

where

H(X) = L+ V̂ion + Diag(L†ρ) + Diag(µxc(ρ)), (26)

µxc(ρ) = dǫxc(ρ)/dρ, and Λne
is a ne × ne symmetric matrix of Lagrangian mul-

tipliers. Because Êtotal(X) = Êtotal(XQ) for any orthogonal matrix Q ∈ Cne×ne ,
we can always choose a particular Q such that Λne

is diagonal. In this case, Λne

contains ne eigenvalues of H(X). We are interested in the ne smallest eigenvalues
and the invariant subspace X associated with these eigenvalues.

3.3 The SCF Iteration

Currently, the most widely used algorithm for solving (25) is the self-consistent field
(SCF) iteration which we outline in Figure 1 for completeness.

SCF Iteration

Input: An initial guess of the wavefunction X(0) ∈ Cn×ne , pseudopotential;
Output: X ∈ Cn×ne such that X∗X = Ine and columns of X spans the invariant

subspace associated with the smallest ne eigenvalues of H(X) defined in (26).

1. for i = 1, 2, ... until convergence

2. Form H(i) = H(X(i−1));

3. Compute X(i) such that H(i)X(i) = X(i)Λ(i), and Λ(i)

contains the ne smallest eigenvalues of H(i);
4. end for

Fig. 1. The SCF iteration

ACM Transactions on Mathematical Software, Vol. V, No. N, December 2007.
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In [Yang et al. 2007], we viewed the SCF iteration as an indirect way to minimize
Êtotal through the minimization of a sequence of quadratic surrogate functions of
the form

q(X) =
1

2
trace(X∗H(i)X), (27)

on the manifold X∗X = Ine
. This constrained minimization problem is solved in

KSSOLV by running a small number of locally optimal preconditioned conjugate
gradient (LOBPCG) iterations [Knyazev 2001].

Since the surrogate function share the same gradient with Êtotal at X(i), i.e.,

∇Êtotal(X)|X=X(i) = H(i)X(i) = ∇q(X)|X=X(i) ,

moving along a descent direction associated with q(X) is likely to produce a reduc-
tion in Êtotal. However, because gradient information is local, there is no guarantee
that the minimizer of q(X), which may be far from X(i), will yield a lower Êtotal

value. This observation partially explains why SCF often fails to converge. It also
suggests at least two ways to improve the convergence of SCF.

One possible improvement is to replace the simple gradient-matching surrogate
q(X) with another quadratic function whose minimizer is more likely to yield a
reduction in Êtotal. In practice, this alternative quadratic function is often con-
structed by replacing the charge density ρ(i) in (26) with a linear combination of
m previously computed charge densities, i.e.,

ρmix =
m−1
∑

j=0

αjρ
(i−j),

where a = (α0, α2, ..., αi−m+1) is chosen as the solution to the following minimiza-
tion problem;

min
aT e=1

‖Ra‖2 (28)

where R = (∆ρ(i) ∆ρ(i−1) ... ∆ρ(m−1)) and ∆ρ(i) = ρ(i)− ρ(i−1). This technique
is often called charge mixing. The particular mixing scheme defined by the solution
to (28) is called Pulay mixing because it was first proposed by Pulay for Hartree-
Fock calculations [Pulay 1980; 1982]. (In computational chemistry, Pulay mixing is
referred to as the method of direct inversion of iterative subspace or simply DIIS).
Other mixing scheme include Kerker mixing [Kerker 1981], Thomas-Fermi mixing

[Raczkowski et al. 2001] and Broyden mixing [Kresse and Furthmüller 1996]. Charge
mixing is often quite effective in practice for improving the convergence SCF even
though its convergence property is still not well understood. In some cases, charge
mixing may fail also.

Another way to improve the convergence of the SCF iteration is to impose an
additional constraint to the surrogate minimization problem (27) so that the wave-
function update can be restricted within a small neighborhood of the gradient
matching point X(i), thereby ensuring a reduction of the total energy function as
we minimize the surrogate function. In [Yang et al. 2007], we showed that the
following constraint

‖XX∗ −X(i)X(i)∗‖2F ≤ ∆

ACM Transactions on Mathematical Software, Vol. V, No. N, December 2007.
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is preferred because it is rotationally invariant (i.e., post-multiplying X by an uni-
tary matrix does not change the constraint), and because adding such a constraint
does not increase the complexity of solving the surrogate minimization problem. It
is not difficult to show [Yang et al. 2007] that that solving the following constrained
minimization

min q(X)
XX∗ = I

‖XX∗ −X(i)X(i)∗‖2F ≤ ∆

(29)

is equivalent to solving a low rank perturbed linear eigenvalue problem
[

H(X(i))− σX(i)X(i)∗
]

X = XΛ, (30)

where σ is essentially the Lagrange multiplier for the inequality constraint in (29)
and Λ is a diagonal matrix that contains the ne smallest eigenvalues of the low rank
perturbed H(i). When σ is sufficiently large (which corresponds to a trust region
radius ∆ that is sufficiently small), the solution to (30) is guaranteed to produce a
reduction in Êtotal(X).

3.4 Direct Constrained Minimization

Instead of focusing on Kohn-Sham equations (25) and minimizing the total energy
indirectly in the SCF iteration, we can minimize the total energy directly in an
iterative procedure that involves finding a sequence of search directions along which
Êtotal(X) decreases and computing an appropriate step length. In most of the
earlier direct minimization methods developed in [Arias et al. 1992; Gillan 1989;
Kresse and Furthmüller 1996; Payne et al. 1992; Teter et al. 1989; VandeVondele
and Hutter 2003; Voorhis and Head-Gordon 2002], the search direction and step
length computations are carried out separately. This separation sometimes results
in slow convergence. We recently developed a new direct constrained minimization
(DCM) algorithm [Yang et al. 2005; 2007] in which the search direction and step
length are obtained simultaneously in each iteration by minimizing the total energy
within a subspace spanned by columns of

Y =

(

X(i),M−1R(i), P (i−1)

)

,

whereX(i) is the approximation toX obtained at the ith iteration, R(i) = H(i)X(i)−
X(i)Λ(i), M is a hermitian positive definite preconditioner, and P (i−1) is the search
direction obtained in the previous iteration. It was shown in [Yang et al. 2005] that
solving the subspace minimization problem is equivalent to computing the eigen-
vectors G associated with the ne smallest eigenvalues of the following nonlinear
eigenvalue problem

Ĥ(G)G = BGΩ, G∗BG = I, (31)

where

Ĥ(G) = Y ∗
[

1

2
L+ Vion + Diag

(

L†ρ(Y G)

)

+ Diag

(

µxc(ρ(Y G))

)]

Y, (32)

and B = Y ∗Y .
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Because the dimension of Ĥ(G) is at most 3ne × 3ne, which is normally much
smaller than that of H(X), it is relatively easy to solve (31) by, for example, a trust
region enabled SCF (TRSCF) iteration. We should note that it is not necessary to
solve (31) to full accuracy in the early stage of the DCM algorithm because all we
need is a G that yields sufficient reduction in the objective function.

Once G is obtained, we can update the wave function by

X(i+1) ← Y G.

The search direction associated with this update is defined, using the MATLAB
submatrix notation, to be

P (i) ≡ Y (:, ne + 1 : 3ne)G(ne + 1 : 3ne, :).

A complete description of the constrained minimization algorithm is shown in Fig-
ure 2. We should point out that solving the projected optimization problem in
Step 7 of the algorithm requires us to evaluate the projected Hamiltonian Ĥ(G)
repeatedly as we search for the best G. However, since the first two terms of Ĥ do
not depend on G, they can be computed and stored in advance. Only the last two
terms of (32) need to be updated. These updates require the charge density, the
Coulomb and the exchange-correlation potentials to be recomputed.

Algorithm: A Constrained Minimization Algorithm for Total Energy Minimization

Input: initial set of wave functions X(0) ∈ Cn×ne ; ionic pseudopotential; a precondi-
tioner M ;

Output:X ∈ Cn×k such that the Kohn-Sham total energy functional Etotal(X) is
minimized and X∗X = Ik.

1. Orthonormalize X(0) such that X(0)∗X(0) = Ik;
2. for i = 0, 1, 2, ... until convergence

3. Compute Θ = X(i)∗H(i)X(i);

4. Compute R = H(i)X(i) −X(i)Θ,
5. if (i > 1) then

Y ← (X(i), M−1R, P (i−1))
else

Y ← (X(i), M−1R);
endif

6. B ← Y ∗Y ;
7. Find G ∈ C2ne×ne or C3ne×ne that minimizes Etotal(Y G)

subject to the constraint G∗BG = Ine ;

8. Set X(i+1) = Y G;
9. if (i > 1) then

P (i) ← Y (:, ne + 1 : 3ne)G(ne + 1 : 3ne, :);
else

P (i) ← Y (:, ne + 1 : 2ne)G(ne + 1 : 2ne, :);
endif

10. end for

Fig. 2. A Direct Constrained Minimization Algorithm for Total Energy Minimization
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4. THE OBJECT ORIENTED DESIGN OF KSSOLV

Both the SCF iteration and the DCM algorithm have been implemented in the KS-
SOLV toolbox, which is written entirely in MATLAB. It is designed to be modular,
hierarchical and extensible so that other types of algorithms can be easily devel-
oped under the same framework. In addition to taking advantage of efficient linear
algebra operations and the 3-D fast Fourier transform (FFT) function available in
MATLAB, the toolbox also makes use of MATLAB’s object oriented programming
(OOP) features. KSSOLV contains several predefined classes that can be easily
used to build a physical atomistic model in MATLAB and to construct numerical
objects associated with planewave discretized Kohn-Sham equations. These classes
are listed in Table I. The class names that appear in the first column of this table
are treated as keywords in KSSOLV. We will demonstrate how specific instances
of these classes (called objects) are created and used in KSSOLV. The internal
structure of these classes are explained in detail in [Yang 2007].

The use of the object oriented design allows us to achieve two main objectives:

(1) Simplify the process of setting up a molecular or bulk system and converting
physical attributes of the system to numerical objects that users can easily work
with.

(2) Enable numerical analysts and computational scientists to easily develop, test
and compare different algorithms for solving the Kohn-Sham equation.

Class name Purpose

Atom Defines various attributes of an atom
Molecule Defines various attributes of a molecule or a basic cell of a periodic system

Ham Defines various attributes of a Kohn-Sham Hamiltonian, e.g, potential
Wavefun Defines one or a set of wavefunctions
FreqMask Defines a mask used to filter high frequency components of a wavefunction

Table I. Classes defined in KSSOLV

In the following, we will illustrate how to define a molecular or bulk system in
KSSOLV by creating Atom and Molecule objects. We will then show how to set up
a Kohn-Sham Hamiltonian, which is represented as a Ham object, associated with
a well defined Molecule object. In KSSOLV, 3-D wavefunctions are represented
as Wavefun objects. Although each Wavefun object stores the Fourier coefficients
of a truncated planewave expansion of one or a few wavefunctions in a compact
way, it can be manipulated as if it is a vector or a matrix. Both the Ham and
the Wavefun objects are used extensively in the KSSOLV implementation of the
SCF and DCM algorithms. As we will see in the following, using these objects
significantly reduces the coding effort required to implement or prototype numerical
algorithms for solving the Kohn-Sham equation.

4.1 From Atoms to Molecules and Crystals

To solve Kohn-Sham equations associated with a particular molecular or bulk sys-
tem in KSSOLV, we must first construct a Molecule object. Even though a bulk
system (such as a crystal) is physically different from a molecule, we currently do
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not make such a distinction in KSSOLV. Both systems are considered periodic. In
the case of a molecule, the periodicity is introduced by placing the molecule in a
ficticious supercell that is periodically extended.

To construct a Molecule object, we can use

mol = Molecule();

to first create an empty object called mol (a user defined variable name). This call
simply sets up the required data structure that would be used to describe various
attributes of mol.

Before mol can be used in subsequent calculations, we must initialize all of its es-
sential attributes which include the number and type of atoms in this molecule, the
size and shape of the supercell that contains the molecule etc. All these attributes
can be defined by using the set method associated with the Molecule class. The
syntax of the set function is

mol = set(mol,attrname,attrvalue);

where the input argument attrname is a predefined string associated with the
Molecule class that gives the name of a particular attribute, and attrvalue is
a user supplied quantity that will be stored in mol. Table II lists the essential
attributes that must be defined before the mol object can be used in subsequent
calculations.

attribute name purpose value type

’supercell’ the primitive or super cell that contains a 3× 3 matrix
the basic atomic constituents

’atomlist’ list of atoms an array of Atom objects
’xyzlist’ list of atomic coordinates an na × 3 matrix
’ecut’ kinetic energy cutoff used for planewave a scalar

discretization

Table II. Attributes to be set in a Molecule object

Each molecule consists of a number of atoms. An atom should be defined as an
Atom object using the Atom constructor. For example

a = Atom(’Si’)

or

a = Atom(14)

defines a silicon atom object named a. Note that an atom can be defined by either
its chemical symbol or by its atomic number. The Atom constructor internally
calculates the number of valence electrons (ne) and retrieves the shell configuration
by looking up a table that describes the electron orbitals associated with different
atoms.

All atoms within a molecule can be placed in an array to form an atom list. The
atom list can then be used to specify the ’atomlist’ attribute of a Molecule object.
For example, a silane molecule contains one silicon (Si) atom and four hydrogen
(H) atoms. After declaring both the Si and H atoms through the commands
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a1 = Atom(’Si’)

a2 = Atom(’H’)

we can form the atom list associated with this molecule by

alist = [a1; a2; a2; a2; a2].

The list can then be used to define the ’atomlist’ attribute of the mol object by

mol = set(mol,’atomlist’,alist).

To complete the description of the atomic configuration of a molecule, we must
also specify the spatial location of each atom. In KSSOLV, the 3-D coordinates of
the atoms can be placed in an na × 3 matrix and passed to a Molecule object by
setting the ‘xyzlist’ attribute. For example, the atomic coordinates associated
with the atoms in SiH4 shown in Figure 3 is set by using

xyzmat = [ 0 0 0

1.61 1.61 1.61

-1.61 -1.61 1.61

1.61 -1.61 -1.61

-1.61 1.61 -1.61 ];

mol = set(mol,’xyzlist’,xyzmat).

In addition to physical properties of a molecule or bulk system, the definition of a
Molecule object in KSSOLV must also contain discretization information. The two
main attributes that affect discretization of the molecular system are the size and
orientation of the supercell and the kinetic energy cutoff. Although these attributes
are not properties of the physical system, including them in the Molecule class
simplifies the construction of the Hamiltonian object and subsequent calculations.

The ’supercell’ attribute defines the shape and size of the primitive or supercell
that contains the basic atomic constituents of a crystal or molecule. In KSSOLV,
the supercell is described by a 3 × 3 matrix. Each column of this matrix defines
the direction and length of one particular edge of the cell (or a translation vector)
emanating from the origin. For example,

mol = set(mol,’supercell’,10*eye(3));

sets the supercell of mol to a 10Å× 10Å× 10Å cube whose three edges are parallel
to the x, y and z axes respectively.

The attribute ‘ecut’ is used to specify the kinetic energy cutoff that determines
the number of effective planewave basis functions (ng) and spatial sampling points
(n1, n2 and n3) used in the discretization. A higher cutoff energy leads to the use of
a larger number of planewave basis functions and more spatial sampling grid points.
This often yields a more accurate finite dimensional approximation at the expense
of higher computational cost. The optimal energy cutoff depends on the molecular
system to be studied and the choice of pseudopotentials used in the Hamiltonian.

4.2 The Hamiltonian Class

A properly defined Molecule object mol can be used to initialize the Kohn-Sham
Hamiltonian associated with this object. The initialization can be done by calling
the constructor
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Fig. 3. The relative positions of all atoms in the SiH4 molecule.

H = Ham(mol).

Although the Kohn-Sham Hamiltonian H(X) is treated as a matrix in equation
(25), it is not stored as a matrix in KSSOLV. Instead, the Ham class keeps L, V̂ion

and total potential Vtot = V̂ion + Diag(L†ρ) + Diag(µxc(ρ)) as separate attributes.
This separation makes it easy to update the Hamiltonian in both the SCF and the
DCM calculations.

The kinetic component of a Ham object contains a compact representation of the
frequency vectors gi (i = 1, 2, ..., ng) that satisfy (17). These frequency vectors
correspond to the nonzero diagonal elements of Dg in (22). The compact repre-
sentation stores the both the numerical values of gi and its (x, y, z) location in a
full 3-D representation. High frequency vectors that do not meet the criterion (17)
are treated as zeros and never used when the kinetic component of the Kohn-Sham
Hamiltonian is applied to a wavefunction.

The ionic potential V̂ion contains a local piece which is constructed and stored as
a 3-D array at initialization. The nonlocal portion of V̂ion is a low rank linear oper-
ator, i.e., it can be represented as WW ∗ for some ng× ℓ (ℓ≪ ng) matrix W , where
ng is the length of the vector gi. The construction of both the local and nonlocal
portions of the ionic potentials makes use of the atomic pseudopotentials stored in
the directory Pseudopot and the numerical procedure developed by Kleinman and
Bylander [Kleinman and Bylander 1982].

The determination of both the Coulomb and exchange correlation potential re-
quires the availability of the charge density ρ which is in turn a function of the
wavefunctions to be computed. Since a good approximation to the desired wave-
functions is not available at initialization, the initial ρ is computed in KSSOLV by
combining atomic charge densities associated with each atom in the mol object.

In addition to standard potentials that appear in Kohn-Sham density functional
formalism, KSSOLV allows a user to specify other external potentials that electrons
may experience through the ’vext’ attribute of a Ham object.

Once a Ham object has been defined, one can retrieve various attributes of the
object through the get function, e.g.,

vt = get(H,’vtot’);
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returns the total potential from a Ham object named H and assigns it to a user
defined variable vt. This potential can be used and updated in a subsequent SCF
or DCM calculation. An updated vt can be passed back into H by using the set

function

H = set(H,’vtot’,vt);

4.3 The Wavefunction Class

We created a special class Wavefun in KSSOLV to represent one or a set of wave-
functions. The rationale for creating such a class is mainly to allow a compact
data structure be used to encode bandlimited wavefunctions so that the cost of
performing linear algebra operations can be reduced. The creation of such a class
also enables users to manipulate wavefunctions as if they are vectors or matrices.

In KSSOLV, a Wavefun object can be constructed using either a noncompact
scheme or a compact scheme. In a noncompact representation, a Wavefun object X
can be constructed through the command

X = Wavefun(psi),

where psi is a MATLAB 3-D array if X represents a single wavefunction, or a cell
array that contains a list of 3-D arrays if X represents a set of wavefunctions.

Under the compact scheme. a bandlimited Wavefun object stores only the nonzero
Fourier expansion coefficients of a single wavefunction ψ(r) or a set of wavefunctions
{ψi(r)}

k
i=1 as a MATLAB cell array of size ng by k, where ng is the number of

nonzero Fourier coefficients in each wavefunction. The locations of these Fourier
coefficients in a 3-D Fourier space is stored in a separate array which is labeled as
the ’idxnz’ attribute of the object. The ’n1’, ’n2’ and ’n3’ attributes, which gives
the dimension of the wavefunction in real space, must be properly set in this case
before the object can be used in subsequent calculation.

In the following section, we will see that all major operations allowed for matrices
have been overloaded for Wavefun objects regardless whether they are stored in a
compact or noncompact scheme. KSSOLV also provides a utility function genX0

that allows one to easily construct initial Wavefun objects for the SCF or DCM
calculations. To generate a set of random bandlimited wavefunctions using the
kinetic energy cutoff specified in a Molecule object mol, one can simply use the
command

X = genX0(mol).

Converting a Wavefun object X to a 3-D array (or a list of 3-D arrays) is straight-
forward when X is constructed using a noncompact scheme. The following command

X3D = get(X,’psi’)

returns the wavefunctions as a cell array X3D of 3-D arrays. Although rarely needed
when using KSSOLV, the following lines of codes show how the same conversion
can be accomplished for an X constructed using a compact representation scheme

n1 = get(X,’n1’);

n2 = get(X,’n2’);

n3 = get(X,’n3’);
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psi = get(X,’psi’);

idx = get(X,’idxnz’);

X3D = zeros(n1,n2,n3);

X3D(idx) = psi{1}.

4.4 Operator Overloading

Because the Kohn-Sham Hamiltonian H(X) and wavefunction X are viewed as
matrices in (25), it is desirable to allow Ham and Wavefun objects to be manipulated
in KSSOLV as if they are matrices. This feature is made possible in KSSOLV by
overloading some basic algebraic operations for a Wavefun object. These overloaded
operations are listed in Table III. One should be careful about the use of some of
these operators. For example, since the wavefunctions used in the SCF and DCM
calculation all have the same dimension, the multiplication operator * is almost
never used between two Wavefun objects except when the first Wavefun object is
transposed or conjugate transposed, i.e., it is valid to perform x’*y or x.’*y, and
the multiplication returns a standard MATLAB matrix object. The overloaded
multiplication operator * for Wavefun objects allows the second operand to be a
standard matrix object with proper dimension. The result of the multiplication is
a Wavefun object.

Operations Description

x + y Add two wavefunctions
x - y Subtract one wavefunction from another
x * y Multiply two wavefunctions and return a matrix
x * a Multiply several wavefunctions with a matrix
x .* y Element-wise multiplication of two wavefunctions
x . y Element-wise division of two wavefunctions
x’ Complex conjugate transpose of a wavefunction
x.’ Transpose of a wavefunction
[x y] Horizontal concatenation of several wavefunctions
x(:,i:j) Subscripted reference of wavefunctions

Table III. Overload operations for Wavefun objects in KSSOLV

The multiplication operator is also overloaded for the Ham class so that the multi-
plication of a Ham object H and a Wavefun object X can be accomplished in KSSOLV
by a simple expression

Y = H*X,

which hides all the complexity of the multiplication from the user.

4.5 Solvers

The current version of KSSOLV provides implementations of both the SCF and
DCM algorithms for solving Kohn-Sham equations associated with a properly con-
structed Molecule object. It also contains an implementation of the LOBPCG
[Knyazev 2001] algorithm that can be used to compute a few smallest eigenval-
ues and their corresponding eigenvectors associated with a fixed Hamiltonian. The
names of these solvers and their functionality are briefly described in Table IV.
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Solver Description

scf.m An implementation of the SCF iteration with charge mixing.
dcm.m An implementation of the DCM algorithm without trust region.
trdcm1.m An implementation of a trust region enabled DCM algorithm with a fixed

trust region radius.
trdcm.m An implementation of a trust region enabled DCM algorithm with an adaptive

trust region radius.
lobpcg.m An implementation of the LOBPCG algorithm for computing approximations

to the smallest eigenvalues and the corresponding eigenvectors of a fixed
Hamiltonian. (It is used in scf.m

Table IV. Solvers provides in KSSOLV

These solvers not only allow users to solve Kohn-Sham equations associated with
different atomistic systems and observe how existing methods perform, but also
provide templates for developing new algorithms.

The simplest usages of the scf and dcm function are

[Etotvec, X, vtot, rho] = scf(mol)

[Etotvec, X, vtot, rho] = dcm(mol),

where mol is a properly constructed Molecule object. Both of these functions
return a vector of total energy (Etotvec) values computed at each iteration, the
final approximation to the desired wavefunctions X, and the total potential vtot
and charge density rho associated with X. A number of optional parameters can
be passed into these functions to improve the efficiency of the computation or the
quality of the solution. The parameters used in scf are listed in Table V along
with their default values. A similar set of parameters for the dcm function can be
found in the user’s guide [Yang 2007]. These parameters can be reset by passing a
string-value pair as arguments to the scf or dcm function. For example,

[Etotvec, X, vtot, rho] = scf(mol,’pulaymix’,’off’);

turns off the Pulay charge mixing scheme in the SCF iteration.

parameter name purpose default

maxscfiter the maximum of SCF iterations allowed 10
scftol the convergence tolerance for SCF 10−6

cgtol the convergence tolerance for the LOBPCG algorithm 10−6

used to solve the linear eigenvalue problem in SCF
maxcgiter the maximum number of LOBPCG iterations allowed 10
pulaymix activation of the Pulay charge mixing ‘on’

kerkmix activation of the Kerker charge mixing ‘on’

Table V. Parameters for SCF

By default, both the scf and dcm functions print out a list of diagnostic infor-
mation on the screen. For example, Figure 4 shows the standard output from the
scf function, which include eigenvalue approximations and residuals of the linear
eigenvalue problem computed at each LOBPCG iteration as well as the approxi-
mate total energy, the residual norm of the Kohn-Sham equation and the difference
between the input and output potentials computed at end of each SCF iteration.
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These intermediate output can be used to monitor the convergence of the algorithm.

[Etotvec, X, vtot, rho] = scf(mol);

initialization...

Beging SCF calculation...

LOBPCG iter = 1

eigval( 1) = 7.195e+00, resnrm = 3.277e+00

eigval( 2) = 7.368e+00, resnrm = 3.347e+00

eigval( 3) = 7.551e+00, resnrm = 3.233e+00

eigval( 4) = 7.703e+00, resnrm = 3.239e+00

LOBPCG iter = 2

eigval( 1) = 5.097e-01, resnrm = 8.297e-01

eigval( 2) = 6.200e-01, resnrm = 8.719e-01

eigval( 3) = 6.912e-01, resnrm = 9.045e-01

eigval( 4) = 9.038e-01, resnrm = 9.130e-01

...

SCF iter 1:

norm(vout-vin) = 5.807e+00

Total energy = -5.8719608972592e+00

resnrm = 1.857e-02

resnrm = 2.161e-02

resnrm = 2.161e-02

resnrm = 2.162e-02

...

Fig. 4. SCF output

5. ALGORITHM DEVELOPMENT UNDER KSSOLV

The use of an object oriented design in KSSOLV simplifies the process of algorithm
prototyping so that new algorithms can be implemented, tested and compared
quickly. This is possible because many basic linear algebra operations can be applied
directly to properly constructed Ham and Wavefun objects. To give an example, we
will show how the DCM algorithm can be easily translated into the MATLAB code
shown in Figure 5. We should point out that the code segment shown in Figure 5
is a simplified version of the dcm.m file included in KSSOLV. The simplification is
made to emphasize the main features of algorithm and its implementation.

In this example, a Ham object H has been constructed during an initialization
step which is not shown here. A set of wavefunctions contained in a Wavefun

object X has been created also. The code segment contained in the while loop
constitutes a single DCM iteration. In this version of the DCM implementation, a
simple, iteration count based termination criterion is used, i.e., the DCM iteration
is terminated when the total number of DCM iterations reaches a user specified
parameter maxdcmiter.

The first few lines of the codes within the while loop compute the precondi-
tioned gradient of the Kohn-Sham total energy with respect to the wave function
X. They correspond to steps 3 and 4 in Figure 2. The preconditioner prec used
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here is constructed using the techniques developed in [Teter et al. 1989]. In ma-
trix notation, the preconditioner defined in [Teter et al. 1989] is diagonal in the
frequency space. Thus it can be constructed as a Wavefun object, and the appli-
cation of prec to wavefunctions stored in R can be achieved using an overloaded
element-wise multiplication operation. The product is another Wavefun object.

We use the overloaded horizontal concatenation operator

Y = [X R];

if (iterdcm > 1) Y = [Y P]; end;

to construct the space spanned by wavefunctions contained in X, R and P. This
matches exactly with Step 5 in Figure 2.

The MATLAB code in Figure 5 illustrates how the Kohn-Sham Hamiltonian
is projected into the subspace spanned by wavefunctions contained in Y and how
the projected problem solved in DCM. The kinetic and ionic potential component
of the Kohn-Sham Hamiltonian are projected outside of the inner SCF for loop
used to solve the projected problem defined in Step 7 of the DCM algorithm. The
function applyKIEP, which we do not show here, simply performs the operation
KY = (L+Vion)Y , where KY is represented as a Wavefun object. The overloaded
Wavefun multiplication operator makes the calculation T = Y ∗KY and B = Y ∗Y
extremely easy.

The projection of the Coulomb and exchange-correlation potential must be done
inside the inner SCF for loop because these nonlinear potentials change as eigenvec-
tors of the projected Hamiltonian Ĥ(G) defined in (31) are updated. The projection
is done by first computing V Y = [Diag(L†ρ)) + Diag(µxc(ρ))]Y using the function
applyNP (which we do not show here) and then performing a Wavefunc multi-
plication to obtain Y ∗V Y . The projected nonlinear potential is combined with
the T matrix computed outside of the for loop to form the projected Kohn-Sham
Hamiltonian A.

Because the dimensions of A and B are relatively small, we can compute all eigen-
values and the corresponding eigenvectors of the matrix pencil (A,B) in each inner
SCF iteration using MATLAB’s eig function. The returned eigenvalues and eigen-
vectors are sorted so that the leading nocc columns of G contains the eigenvectors
associated with the nocc smallest eigenvalues of (A,B). These eigenvectors are used
to update the wavefunctions X by multiplying Y with G(:,1:nocc) using the over-
load wavefunction multiplication operator. These calculations are followed by the
update of the charge density rho as well as the recalculation of the Coulomb and
exchange-correlation potentials and energies. The new nonlinear potential are then
used to update the Hamiltonian by calling the set function.

6. EXAMPLES

The KSSOLV toolbox includes a number of examples that users can experiment
with. Each example represents a particular molecule or bulk system. The system
is created in a setup file. Table VI shows the names of all setup files and a brief
description for each one of them. It also shows the number of occupied states
(nocc) which is simply the number of electron pairs for most systems (with the
exception of the quantum dot example in which electrons are not paired by their
spin orientations). To create a new system, a user can simply take one of the
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while ( iterdcm <= maxdcmiter )

HX = H*X;

T = X’*HX;

R = HX - X*T; % the gradient of the total energy

for j = 1:nocc

R(:,j)=prec.*R(:,j); % apply the preconditioner prec

end;

% construct the projection subspace

Y = [X R];

if (iterdcm > 1) Y = [Y P]; end;

ny = get(Y,’k’);

% project the kinetic and ionic potential part of the Hamiltonian into Y

KY = applyKIEP(H,Y);

T = Y’*KY;

B = Y’*Y;

% solve the projected problem

G = eye(ny);

for iterscf = 1:maxscfiter

% project the nonlinear potential part of the Hamiltonian

VY = applyNP(H,Y);

A = T + Y’*VY;

[G,D]=eig(A,B,’chol’);

X = Y*G(:,1:nocc);

rho = getcharge(mol,X,spintype);

% update the the Coulomb and exchange correlation potential

[vcoul,vxc,uxc2,rho]=getvhxc(mol,rho);

% recalculate kinetic, Coulomb and exchange-correlation and total energy

Ekin = (2/spintype)*trace( G(:,1:nocc)’*T*G(:,1:nocc) );

Ecoul = getEcoul(mol,rho,vcoul);

Exc = getExc(mol,rho,uxc2);

Etot = Ewald + Ealphat + Ekin + Ecoul + Exc;

% Update the nonlinear potential only

H = set(H,’vnp’,vcoul+vxc);

end;

% update the total potential

vout = getvtot(mol, vion, vext, vcoul, vxc);

H = set(H,’vtot’,vout);

% save the current "search direction"

P = Y(:,nocc+1:ny)*G(nocc+1:ny,1:nocc);

iterdcm = iterdcm + 1;

end;

Fig. 5. DCM in KSSOLV

existing setup files and modify the construction of the Molecule object. A user can
also change of the size of the supercell or the kinetic energy cutoff of the existing
setup file to examine changes in the convergence of the numerical method or the
quality of the computed solution.

Table VII shows that running an example shown in Table VI typically takes
less than a minute on a Linux workstation, with the exception of of the Pt2Ni6O
example which took more than 10 minutes to complete 10 SCF iterations. The
timing results reported in the table are obtained on a single 2.2 Ghz AMD Opteron
processor. The total amount of memory available on the machine is 4 gigabytes
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setup file name nocc Description

c2h6 setup.m 7 an ethane molecule
co2 setup.m 8 a carbon dioxide molecule
h2o setup.m 4 a water molecule
hnco setup.m 8 an isocyanic acid molecule
qdot setup.m 8 an 8-electron quantum dot confined by external potential
si2h4 setup.m 6 a planar singlet silylene molecule
sibulk setup.m 6 a silicon bulk system
sih4 setup.m 4 a silane molecule
ptnio setup.m 43 a Pt2Ni6O bulk

Table VI. Setup files for examples included in KSSOLV

(GB). A kinetic energy cutoff of 25 Ryd is used for most systems. For a 10×10×10

(Å
3
) cubic supercell, such a cutoff results in a 32 × 32 × 32 sampling grid for the

wavefunctions. For the Pt2Ni6O bulk system, the use of a larger supercell requires
the grid size to be increased to 63 × 34 × 30. Moreover, because the number of
electrons in this heavy-atom system is relatively large (nocc = 43), the problem
takes more time to solve.

The same initial guesses to the wavefunctions were used for both the SCF and
DCM runs. All runs reported in the table used the default parameters in SCF
and DCM. For example, in the case of SCF, the maximum number of LOBPCG
iterations for solving each linear eigenvalue was set to 10. In the case of DCM,
three inner SCF iterations were performed to obtain an approximate solution to
(31).

The SCF and DCM errors reported in the last two columns of the table are the
residual errors defined as

error = ‖H(X)X −XΛ‖F ,

whereX contains the wavefunctions returned from SCF or DCM and Λ = X∗H(X)X .
Table VII shows that DCM appears to run faster than SCF for almost all systems.

With the exception of two systems (CO2 and quantum dot), it also produces more
accurate results. We should caution the reader not to interpret the timing provided
in Table VII as a comparison between the relative efficiency of SCF and DCM
because the implementations of these methods have not been optimized in KSSOLV.
The optimal implementation of these methods will depend on a number of factors
that we will not address in this paper.

system SCF time DCM time SCF error DCM error

C2H6 44 34 4.6e-5 1.1e-5
CO2 35 30 1.9e-3 1.1e-4
H2O 17 17 7.9e-5 2.0e-5

HNCO 48 38 7.4e-3 6.8e-5
Quantum dot 25 18 5.0e-3 3.7e-1

Si2H4 34 31 1.8e-3 2.7e-4
silicon bulk 15 17 3.0e-4 9.6e-6

SiH4 29 24 9.7e-6 4.9e-7
Pt2Ni6O 1108 480 3.7 4.9e-2

Table VII. Comparing the timing and accuracy of running SCF and DCM in KSSOLV
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We will now take a closer look at two specific examples that demonstrate how
KSSOLV can be used to solve Kohn-Sham equations associated with different types
of systems and how the computed results can be examined, compared and visualized
in the MATLAB envrionment.

6.1 The Silane Molecule

The simplest example included in KSSOLV is perhaps the SiH4 (silane) example
described in the sih4 setup.m. The setup file contains the code snippets shown in
Figure 6. These codes are used to construct a Molecule object for a molecule that
consists of a silicon atom and four hydrogen atoms. The geometry configuration of
these atoms is shown in Figure 3.

% 1. construct atoms

a1 = Atom(’Si’);

a2 = Atom(’H’);

alist = [a1; a2; a2; a2; a2];

% 2. set up supercell

C = 10*eye(3);

% 3. define the coordinates the atoms

coefs = [

0.0 0.0 0.0

0.161 0.161 0.161

-0.161 -0.161 0.161

0.161 -0.161 -0.161

-0.161 0.161 -0.161

];

xyzmat = coefs*C’;

% 4. Configure the molecule

mol = Molecule();

mol = set(mol,’supercell’,C);

mol = set(mol,’atomlist’,alist);

mol = set(mol,’xyzlist’ ,xyzmat);

mol = set(mol,’ecut’, 25); % kinetic energy cut off

mol = set(mol,’name’,’SiH4’);

Fig. 6. Setting up the Silane molecule

The overloaded display function for the Molecule class in KSSOLV allows users
to see various attributes of the mol object by simply typing mol on the command
line (without a semicolon at the end). Figure 7 shows the typical information one
would see after typing mol on the command line.

The convergence behavior associated with different algorithms can be easily visu-
alized by plotting the history of total energy reduction Etotvec-Eminwhere Emin is
the minimum total energy computed by all methods. For example, Figure 8 shows
how the total energy changes at each SCF and DCM iteration. We can clearly see
from this figure that the reduction in total energy is more rapid in DCM than that
in SCF for the silane system. Under the MATLAB environment, a user can easily
modify the scf or dcm function to record and plot the change in total energy or
Kohn-Sham residual norm with respect to either CPU time or the number of matrix
vector multiplications performed. Similarly, we can compare the performance of the
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>> mol

Molecule: SiH4

supercell:

1.000e+01 0.000e+00 0.000e+00

0.000e+00 1.000e+01 0.000e+00

0.000e+00 0.000e+00 1.000e+01

sampling size: n1 = 32, n2 = 32, n3 = 32

atoms and coordinates:

1 Si 0.000e+00 0.000e+00 0.000e+00

2 H 1.610e+00 1.610e+00 1.610e+00

3 H -1.610e+00 -1.610e+00 1.610e+00

4 H 1.610e+00 -1.610e+00 -1.610e+00

5 H -1.610e+00 1.610e+00 -1.610e+00

number of electrons : 8

spin type : 1

kinetic energy cutoff: 2.500e+01

Fig. 7. Displaying the attributes of the Silane molecule

same algorithm with different parameter settings quite easily also. Figure 9 shows
the use of charge mixing clearly accelerates the convergence of the SCF iteration.
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Fig. 8. Comparing the reduction of total energy in SCF and DCM for SiH4.

For computational scientists, it is important to be able to examine the computed
solution visually so that they may gain new insights into physical properties of the
atomistic system under study. The MATLAB visualization capabilities make this
task extremely easy. In Figure 10, we show the iso-surface rendering of the charge
density rho returned from the scf function. This figure is generated in MATLAB
by using the command

isosurface(rho);
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Fig. 9. The effect of charge mixing in SCF.

Fig. 10. The computed charge density of the SiH4 molecule.

6.2 Electron quantum dot confined by an external potential

In addition to molecules and bulk system, KSSOLV can be used to study the
properties of quantum dots that consist of only electrons confined by an external
potential field. The setup file qdot setup.m which we list in Figure 11 shows
how such a system can be created. Notice that no atomic information is needed
in the setup file. Instead, we specify the number of electrons and set the spin
type (spintype) to 2, which indicates that the wavefunction associated with each
electron is treated differently. The getVharmonic function used in the setup file
(which we do not show here) defines an external potential parameterized by a
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parameter which is set to 1 in the setup file.

% 1. set up supercell

C = 10*eye(3);

% 2. Configure the molecule (crystal)

mol = Molecule();

mol = set(mol,’supercell’,C);

mol = set(mol,’ecut’, 25); % kinetic energy cut off

mol = set(mol,’name’,’Quantum dot’);

% 3. construct external potential

vext = getVharmonic(mol,1);

mol = set(mol,’vext’, vext);

% 4. set the number of electrons

mol = set(mol,’nel’,4);

mol = set(mol,’spintype’,2);

Fig. 11. Setting up a four-electron quantum dot

>> mol

Molecule: Quantum dot

supercell:

1.000e+01 0.000e+00 0.000e+00

0.000e+00 1.000e+01 0.000e+00

0.000e+00 0.000e+00 1.000e+01

sampling size: n1 = 32, n2 = 32, n3 = 32

atoms and coordinates: none

number of electrons : 4

spin type : 2

kinetic energy cutoff: 2.500e+01

Fig. 12. Attributes of a four-electron quantum dot

Figure 12 shows the attributes of the quantum dot when we type mol at the
MATLAB prompt. Notice that the atoms and coordinates attribute is set to
none. Figure 13 provides a partial listing of the output produced from running

[Etotvec, X, vtot, rho] = dcm(mol,’maxdcmiter’,50);

The output shows that the convergence of DCM algorithm appears to be slow for
this problem. In particular, the total energy changes very little from one DCM
iteration to another. In the last few DCM iterations, there is no discernable change
in total energy within the inner SCF iteration used to solve the projected problem.
For this problem, the SCF iteration appears to be more effective as we have already
seen from Table VII.
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Begin DCM calculation...

iterdcm = 1

resnrm = 5.439e-01

resnrm = 8.750e-01

resnrm = 1.075e+00

resnrm = 1.173e+00

inner_scf = 1, Etot = 1.0467219866980e+01

inner_scf = 2, Etot = 1.0466951470435e+01

inner_scf = 3, Etot = 1.0466951470413e+01

------

iterdcm = 2

resnrm = 4.107e-01

resnrm = 6.688e-01

resnrm = 8.163e-01

resnrm = 9.329e-01

inner_scf = 1, Etot = 1.0364915402274e+01

inner_scf = 2, Etot = 1.0364915284577e+01

inner_scf = 3, Etot = 1.0364915284577e+01

------

...

iterdcm = 49

resnrm = 1.752e-05

resnrm = 4.961e-05

resnrm = 5.023e-05

resnrm = 9.748e-05

inner_scf = 1, Etot = 1.0133540758574e+01

inner_scf = 2, Etot = 1.0133540758574e+01

inner_scf = 3, Etot = 1.0133540758574e+01

------

iterdcm = 50

resnrm = 1.611e-05

resnrm = 3.769e-05

resnrm = 4.725e-05

resnrm = 8.170e-05

inner_scf = 1, Etot = 1.0133540758308e+01

inner_scf = 2, Etot = 1.0133540758308e+01

inner_scf = 3, Etot = 1.0133540758308e+01

Fig. 13. Output from applying DCM to a four-electron quantum dot

7. CONCLUSION

We have described the design and implementation of KSSOLV, an MATLAB tool-
box for solving Kohn-Sham equations. Planewave discretization is used in KSSOLV
because of its variational properties and simplicity. It is the natural choice for
building an MATLAB Kohn-Sham equation solver also because discrete Fourier
transforms can be computed efficiently in MATLAB by its optimized FFT func-
tions. The standard pseudopotential technique is utilized in KSSOLV to reduce the
number of electron wavefunctions to be computed and the number of planewave
basis functions required to represent each wavefunction. We should point out that
planewave discretization does have some drawbacks [Kronik et al. 2006]. In partic-
ular, for molecules, the size of the ficticious supercell has to be large enough so that
the computed wavefunctions do not overlap near the edge of the box. However,
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these issues are not essential if one simply intends to study the existing algorithms
or develop new algorithms for solving finite dimensional Kohn-Sham equations.

One of the main features of the toolbox is the object-oriented design that allows
users to easily set up a physical atomistic system. Physical attributes of the system
are translated into numerical objects such as wavefunctions and Hamiltonians in
a transparent fashion. These objects can be easily manipulated using overloaded
algebraic operations. As a result, the coding effort required to investigate properties
of the existing algorithms and to develop new algorithms for solving the Kohn-Sham
equations is reduced significantly in KSSOLV. Furthermore, the visualization tools
available in MATLAB enable users to quickly examine the computed results and
compare the performance of different algorithms.

Some computational efficiency is sacrificed in KSSOLV to keep the object oriented
interface simple. A number of improvements will be made in the future to reduce the
memory usage and floating point operations required to construct and manipulate a
Kohn-Sham Hamiltonian and electron wavefunctions. Alternative algorithms such
as the polynomial filtered subspace iteration [Bekas et al. 2005; Zhou et al. 2006],
the Grassman manifold constrained total energy minimization scheme [Edelman
et al. 1998] and the energy DIIS (EDIIS) algorithm [Kudin et al. 2006] will also be
included in KSSOLV in future releases of the toolbox.

Because no parallelization has been implemented in the current version of KS-
SOLV, the size of the atomistic system one can study is rather limited. Nonethe-
less, many computational experiments can already be performed on the examples
included in the package using the KSSOLV implementations of the SCF and DCM
algorithms. We believe a great deal can be learned from running the existing codes
on these examples.

REFERENCES

Arias, T. A., Payne, M. C., and Joannopoulos, J. D. 1992. Ab initio molecular dynamics:
Analytically continued energy functionals and insights into iterative solutions. Phys. Rev.

Lett. 69, 1077–1080.

Ashcroft, N. W. and Mermin, N. D. 1976. Solid State Physics. Brooks Cole, Pacific Grove,
CA.

Bekas, C., Kokiopoulou, E., and Saad, Y. 2005. Polynomial filtered lanczos iterations with
applications in density functional theory. Tech. Rep. umsi-2005-117, University of Minnesota.
July.
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